3.139 \(\int \frac {a+i a \tan (e+f x)}{(d \tan (e+f x))^{3/2}} \, dx\)

Optimal. Leaf size=62 \[ -\frac {2 (-1)^{3/4} a \tan ^{-1}\left (\frac {(-1)^{3/4} \sqrt {d \tan (e+f x)}}{\sqrt {d}}\right )}{d^{3/2} f}-\frac {2 a}{d f \sqrt {d \tan (e+f x)}} \]

[Out]

-2*(-1)^(3/4)*a*arctan((-1)^(3/4)*(d*tan(f*x+e))^(1/2)/d^(1/2))/d^(3/2)/f-2*a/d/f/(d*tan(f*x+e))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.08, antiderivative size = 62, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.115, Rules used = {3529, 3533, 205} \[ -\frac {2 (-1)^{3/4} a \tan ^{-1}\left (\frac {(-1)^{3/4} \sqrt {d \tan (e+f x)}}{\sqrt {d}}\right )}{d^{3/2} f}-\frac {2 a}{d f \sqrt {d \tan (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Int[(a + I*a*Tan[e + f*x])/(d*Tan[e + f*x])^(3/2),x]

[Out]

(-2*(-1)^(3/4)*a*ArcTan[((-1)^(3/4)*Sqrt[d*Tan[e + f*x]])/Sqrt[d]])/(d^(3/2)*f) - (2*a)/(d*f*Sqrt[d*Tan[e + f*
x]])

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 3529

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[((
b*c - a*d)*(a + b*Tan[e + f*x])^(m + 1))/(f*(m + 1)*(a^2 + b^2)), x] + Dist[1/(a^2 + b^2), Int[(a + b*Tan[e +
f*x])^(m + 1)*Simp[a*c + b*d - (b*c - a*d)*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c
 - a*d, 0] && NeQ[a^2 + b^2, 0] && LtQ[m, -1]

Rule 3533

Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[(2*c^2)/f, S
ubst[Int[1/(b*c - d*x^2), x], x, Sqrt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && EqQ[c^2 + d^2, 0]

Rubi steps

\begin {align*} \int \frac {a+i a \tan (e+f x)}{(d \tan (e+f x))^{3/2}} \, dx &=-\frac {2 a}{d f \sqrt {d \tan (e+f x)}}+\frac {\int \frac {i a d-a d \tan (e+f x)}{\sqrt {d \tan (e+f x)}} \, dx}{d^2}\\ &=-\frac {2 a}{d f \sqrt {d \tan (e+f x)}}-\frac {\left (2 a^2\right ) \operatorname {Subst}\left (\int \frac {1}{i a d^2+a d x^2} \, dx,x,\sqrt {d \tan (e+f x)}\right )}{f}\\ &=-\frac {2 (-1)^{3/4} a \tan ^{-1}\left (\frac {(-1)^{3/4} \sqrt {d \tan (e+f x)}}{\sqrt {d}}\right )}{d^{3/2} f}-\frac {2 a}{d f \sqrt {d \tan (e+f x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 1.16, size = 138, normalized size = 2.23 \[ -\frac {2 a e^{-i (e+f x)} \sin (e+f x) (\tan (e+f x)-i) \left (i \sqrt {i \tan (e+f x)}+\tan (e+f x) \tanh ^{-1}\left (\sqrt {\frac {-1+e^{2 i (e+f x)}}{1+e^{2 i (e+f x)}}}\right )\right )}{f \sqrt {\frac {-1+e^{2 i (e+f x)}}{1+e^{2 i (e+f x)}}} (d \tan (e+f x))^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + I*a*Tan[e + f*x])/(d*Tan[e + f*x])^(3/2),x]

[Out]

(-2*a*Sin[e + f*x]*(-I + Tan[e + f*x])*(I*Sqrt[I*Tan[e + f*x]] + ArcTanh[Sqrt[(-1 + E^((2*I)*(e + f*x)))/(1 +
E^((2*I)*(e + f*x)))]]*Tan[e + f*x]))/(E^(I*(e + f*x))*Sqrt[(-1 + E^((2*I)*(e + f*x)))/(1 + E^((2*I)*(e + f*x)
))]*f*(d*Tan[e + f*x])^(3/2))

________________________________________________________________________________________

fricas [C]  time = 0.44, size = 339, normalized size = 5.47 \[ -\frac {{\left (d^{2} f e^{\left (2 i \, f x + 2 i \, e\right )} - d^{2} f\right )} \sqrt {\frac {4 i \, a^{2}}{d^{3} f^{2}}} \log \left (\frac {{\left (-2 i \, a d e^{\left (2 i \, f x + 2 i \, e\right )} + {\left (i \, d^{2} f e^{\left (2 i \, f x + 2 i \, e\right )} + i \, d^{2} f\right )} \sqrt {\frac {-i \, d e^{\left (2 i \, f x + 2 i \, e\right )} + i \, d}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} \sqrt {\frac {4 i \, a^{2}}{d^{3} f^{2}}}\right )} e^{\left (-2 i \, f x - 2 i \, e\right )}}{a}\right ) - {\left (d^{2} f e^{\left (2 i \, f x + 2 i \, e\right )} - d^{2} f\right )} \sqrt {\frac {4 i \, a^{2}}{d^{3} f^{2}}} \log \left (\frac {{\left (-2 i \, a d e^{\left (2 i \, f x + 2 i \, e\right )} + {\left (-i \, d^{2} f e^{\left (2 i \, f x + 2 i \, e\right )} - i \, d^{2} f\right )} \sqrt {\frac {-i \, d e^{\left (2 i \, f x + 2 i \, e\right )} + i \, d}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} \sqrt {\frac {4 i \, a^{2}}{d^{3} f^{2}}}\right )} e^{\left (-2 i \, f x - 2 i \, e\right )}}{a}\right ) - {\left (-8 i \, a e^{\left (2 i \, f x + 2 i \, e\right )} - 8 i \, a\right )} \sqrt {\frac {-i \, d e^{\left (2 i \, f x + 2 i \, e\right )} + i \, d}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}}}{4 \, {\left (d^{2} f e^{\left (2 i \, f x + 2 i \, e\right )} - d^{2} f\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(f*x+e))/(d*tan(f*x+e))^(3/2),x, algorithm="fricas")

[Out]

-1/4*((d^2*f*e^(2*I*f*x + 2*I*e) - d^2*f)*sqrt(4*I*a^2/(d^3*f^2))*log((-2*I*a*d*e^(2*I*f*x + 2*I*e) + (I*d^2*f
*e^(2*I*f*x + 2*I*e) + I*d^2*f)*sqrt((-I*d*e^(2*I*f*x + 2*I*e) + I*d)/(e^(2*I*f*x + 2*I*e) + 1))*sqrt(4*I*a^2/
(d^3*f^2)))*e^(-2*I*f*x - 2*I*e)/a) - (d^2*f*e^(2*I*f*x + 2*I*e) - d^2*f)*sqrt(4*I*a^2/(d^3*f^2))*log((-2*I*a*
d*e^(2*I*f*x + 2*I*e) + (-I*d^2*f*e^(2*I*f*x + 2*I*e) - I*d^2*f)*sqrt((-I*d*e^(2*I*f*x + 2*I*e) + I*d)/(e^(2*I
*f*x + 2*I*e) + 1))*sqrt(4*I*a^2/(d^3*f^2)))*e^(-2*I*f*x - 2*I*e)/a) - (-8*I*a*e^(2*I*f*x + 2*I*e) - 8*I*a)*sq
rt((-I*d*e^(2*I*f*x + 2*I*e) + I*d)/(e^(2*I*f*x + 2*I*e) + 1)))/(d^2*f*e^(2*I*f*x + 2*I*e) - d^2*f)

________________________________________________________________________________________

giac [C]  time = 0.91, size = 89, normalized size = 1.44 \[ \frac {2 \, a {\left (\frac {i \, \sqrt {2} \arctan \left (-\frac {16 i \, \sqrt {d^{2}} \sqrt {d \tan \left (f x + e\right )}}{-8 i \, \sqrt {2} d^{\frac {3}{2}} + 8 \, \sqrt {2} \sqrt {d^{2}} \sqrt {d}}\right )}{\sqrt {d} f {\left (-\frac {i \, d}{\sqrt {d^{2}}} + 1\right )}} - \frac {1}{\sqrt {d \tan \left (f x + e\right )} f}\right )}}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(f*x+e))/(d*tan(f*x+e))^(3/2),x, algorithm="giac")

[Out]

2*a*(I*sqrt(2)*arctan(-16*I*sqrt(d^2)*sqrt(d*tan(f*x + e))/(-8*I*sqrt(2)*d^(3/2) + 8*sqrt(2)*sqrt(d^2)*sqrt(d)
))/(sqrt(d)*f*(-I*d/sqrt(d^2) + 1)) - 1/(sqrt(d*tan(f*x + e))*f))/d

________________________________________________________________________________________

maple [C]  time = 0.17, size = 358, normalized size = 5.77 \[ \frac {i a \left (d^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \ln \left (\frac {d \tan \left (f x +e \right )+\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}{d \tan \left (f x +e \right )-\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}\right )}{4 f \,d^{2}}+\frac {i a \left (d^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \arctan \left (\frac {\sqrt {2}\, \sqrt {d \tan \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )}{2 f \,d^{2}}-\frac {i a \left (d^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \arctan \left (-\frac {\sqrt {2}\, \sqrt {d \tan \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )}{2 f \,d^{2}}-\frac {a \sqrt {2}\, \ln \left (\frac {d \tan \left (f x +e \right )-\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}{d \tan \left (f x +e \right )+\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}\right )}{4 f d \left (d^{2}\right )^{\frac {1}{4}}}-\frac {a \sqrt {2}\, \arctan \left (\frac {\sqrt {2}\, \sqrt {d \tan \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )}{2 f d \left (d^{2}\right )^{\frac {1}{4}}}+\frac {a \sqrt {2}\, \arctan \left (-\frac {\sqrt {2}\, \sqrt {d \tan \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )}{2 f d \left (d^{2}\right )^{\frac {1}{4}}}-\frac {2 a}{d f \sqrt {d \tan \left (f x +e \right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+I*a*tan(f*x+e))/(d*tan(f*x+e))^(3/2),x)

[Out]

1/4*I*a/f/d^2*(d^2)^(1/4)*2^(1/2)*ln((d*tan(f*x+e)+(d^2)^(1/4)*(d*tan(f*x+e))^(1/2)*2^(1/2)+(d^2)^(1/2))/(d*ta
n(f*x+e)-(d^2)^(1/4)*(d*tan(f*x+e))^(1/2)*2^(1/2)+(d^2)^(1/2)))+1/2*I*a/f/d^2*(d^2)^(1/4)*2^(1/2)*arctan(2^(1/
2)/(d^2)^(1/4)*(d*tan(f*x+e))^(1/2)+1)-1/2*I*a/f/d^2*(d^2)^(1/4)*2^(1/2)*arctan(-2^(1/2)/(d^2)^(1/4)*(d*tan(f*
x+e))^(1/2)+1)-1/4*a/f/d*2^(1/2)/(d^2)^(1/4)*ln((d*tan(f*x+e)-(d^2)^(1/4)*(d*tan(f*x+e))^(1/2)*2^(1/2)+(d^2)^(
1/2))/(d*tan(f*x+e)+(d^2)^(1/4)*(d*tan(f*x+e))^(1/2)*2^(1/2)+(d^2)^(1/2)))-1/2*a/f/d*2^(1/2)/(d^2)^(1/4)*arcta
n(2^(1/2)/(d^2)^(1/4)*(d*tan(f*x+e))^(1/2)+1)+1/2*a/f/d*2^(1/2)/(d^2)^(1/4)*arctan(-2^(1/2)/(d^2)^(1/4)*(d*tan
(f*x+e))^(1/2)+1)-2*a/d/f/(d*tan(f*x+e))^(1/2)

________________________________________________________________________________________

maxima [C]  time = 0.45, size = 172, normalized size = 2.77 \[ \frac {a {\left (\frac {\left (2 i - 2\right ) \, \sqrt {2} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \sqrt {d} + 2 \, \sqrt {d \tan \left (f x + e\right )}\right )}}{2 \, \sqrt {d}}\right )}{\sqrt {d}} + \frac {\left (2 i - 2\right ) \, \sqrt {2} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \sqrt {d} - 2 \, \sqrt {d \tan \left (f x + e\right )}\right )}}{2 \, \sqrt {d}}\right )}{\sqrt {d}} + \frac {\left (i + 1\right ) \, \sqrt {2} \log \left (d \tan \left (f x + e\right ) + \sqrt {2} \sqrt {d \tan \left (f x + e\right )} \sqrt {d} + d\right )}{\sqrt {d}} - \frac {\left (i + 1\right ) \, \sqrt {2} \log \left (d \tan \left (f x + e\right ) - \sqrt {2} \sqrt {d \tan \left (f x + e\right )} \sqrt {d} + d\right )}{\sqrt {d}}\right )} - \frac {8 \, a}{\sqrt {d \tan \left (f x + e\right )}}}{4 \, d f} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(f*x+e))/(d*tan(f*x+e))^(3/2),x, algorithm="maxima")

[Out]

1/4*(a*((2*I - 2)*sqrt(2)*arctan(1/2*sqrt(2)*(sqrt(2)*sqrt(d) + 2*sqrt(d*tan(f*x + e)))/sqrt(d))/sqrt(d) + (2*
I - 2)*sqrt(2)*arctan(-1/2*sqrt(2)*(sqrt(2)*sqrt(d) - 2*sqrt(d*tan(f*x + e)))/sqrt(d))/sqrt(d) + (I + 1)*sqrt(
2)*log(d*tan(f*x + e) + sqrt(2)*sqrt(d*tan(f*x + e))*sqrt(d) + d)/sqrt(d) - (I + 1)*sqrt(2)*log(d*tan(f*x + e)
 - sqrt(2)*sqrt(d*tan(f*x + e))*sqrt(d) + d)/sqrt(d)) - 8*a/sqrt(d*tan(f*x + e)))/(d*f)

________________________________________________________________________________________

mupad [B]  time = 4.36, size = 50, normalized size = 0.81 \[ \frac {2\,{\left (-1\right )}^{1/4}\,a\,\mathrm {atanh}\left (\frac {{\left (-1\right )}^{1/4}\,\sqrt {d\,\mathrm {tan}\left (e+f\,x\right )}}{\sqrt {d}}\right )}{d^{3/2}\,f}-\frac {2\,a}{d\,f\,\sqrt {d\,\mathrm {tan}\left (e+f\,x\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + a*tan(e + f*x)*1i)/(d*tan(e + f*x))^(3/2),x)

[Out]

(2*(-1)^(1/4)*a*atanh(((-1)^(1/4)*(d*tan(e + f*x))^(1/2))/d^(1/2)))/(d^(3/2)*f) - (2*a)/(d*f*(d*tan(e + f*x))^
(1/2))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ i a \left (\int \left (- \frac {i}{\left (d \tan {\left (e + f x \right )}\right )^{\frac {3}{2}}}\right )\, dx + \int \frac {\tan {\left (e + f x \right )}}{\left (d \tan {\left (e + f x \right )}\right )^{\frac {3}{2}}}\, dx\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(f*x+e))/(d*tan(f*x+e))**(3/2),x)

[Out]

I*a*(Integral(-I/(d*tan(e + f*x))**(3/2), x) + Integral(tan(e + f*x)/(d*tan(e + f*x))**(3/2), x))

________________________________________________________________________________________